Linear preservers of balanced singular inertia classes
نویسندگان
چکیده
منابع مشابه
Linear Preservers of Majorization
For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...
متن کاملLinear Size Distance Preservers
The famous shortest path tree lemma states that, for any node s in a graph G = (V,E), there is a subgraph on O(n) edges that preserves all distances between node pairs in the set {s}×V . A very basic question in distance sketching research, with applications to other problems in the field, is to categorize when else graphs admit sparse subgraphs that preserve distances between a set P of p node...
متن کاملOn multiplicative (strong) linear preservers of majorizations
In this paper, we study some kinds of majorizations on $textbf{M}_{n}$ and their linear or strong linear preservers. Also, we find the structure of linear or strong linear preservers which are multiplicative, i.e. linear or strong linear preservers like $Phi $ with the property $Phi (AB)=Phi (A)Phi (B)$ for every $A,Bin textbf{M}_{n}$.
متن کاملEla Characterization of Classes of Singular Linear Differential-algebraic Equations∗
Linear, possibly overor underdetermined, differential-algebraic equations are studied that have the same solution behavior as linear differential-algebraic equations with well-defined strangeness index. In particular, three different characterizations are given for differential-algebraic equations, namely by means of solution spaces, canonical forms, and derivative arrays. Two levels of general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1994
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90105-8